Seat No.

C. U. SHAH UNIVERSITY

M.Sc. (Mathematics) Semester-II Summer – 2015

Subject Name: Algebra-I Subject Code: 5SC02MTC5

Time: 03 hours

Maximum Marks: 70

(05)

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumption whenever necessary.
- 3. Figures to the right indicate full marks.

also primitive polynomial.

Section– I Marks

Q-1	a)	Define : Principal Ideal, Principal Ideal Ring	(02)
	b)	Define : Euclidean ring	(02)
	c)	Let R be a ring with identity, I be an ideal in R. Prove if $1 \in R$ then	(02)
		I = R.	
	d)	Define : Associates.	(01)

- Q-2 a) Let R be a Euclidean ring. $a_0 \in R$. Prove that the ideal $A = \langle a_0 \rangle$ is (07) maximal if and only if a_0 is prime element of R.
 - b) Let R be a Euclidean ring, then any two elements a and b in R have a greatest common divisor d = (a, b) in R. Moreover $d = \lambda a + \mu b$ for some λ , μ in R.

c) Let
$$I = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} / a, b \in Z \right\}$$
. Is it an ideal of $M_2(Z)$? Justify your answer. (03)

OR

Q-2	a)	Prove that the Gaussian ring of integers J[i] is a Euclidean ring.	(07)
	b)	Let R be a Euclidean ring, then any element in R is either a unit in R or can be written as a product of a finite number of prime elements in R.	(04)
	c)	Prove that every Euclidean ring has identity.	(03)
Q-3	a)	Let $f(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ be a polynomial with integer coefficients. Suppose that for some prime number p $p/a_0, p/a_1, \dots, p/a_{n-1}$ but p does not divide a_n and p^2 does not divide a_o . Then prove $f(x)$ is irreducible over Q.	(05)
	b)	State and prove Unique Factorization Theorem.	(05)
	c)	Let R be a Euclidean ring. Then prove for any a,b,c in R if $(a, b) = 1$ and a/bc then a/c .	(04)
		OR	
Q-3	a)	Prove that if $f(x)$ and $g(x)$ in $Z[x]$ are primitive then $f(x)$. $g(x)$ is	(05)

b) Let f(x) and g(x) are two nonzero elements of F[x], F is a field then

		prove that $\deg(f(x), g(x)) = \deg(f(x)) + \deg(g(x))$.	
	c)	Let R be a Euclidean ring. Prove if π is a prime element in R and π/ab then π/a or π/b .	(04)
		Section – II	
Q-4	a)	Define : Irreducible polynomial, Primitive polynomial.	(02)
	b)	Define : Galois group.	(02)
	c)	Define: Radical extension.	(02)
	d)	Define: Commutator of a and b in a group G.	(01)
Q-5	a)	Prove that following polynomials are irreducible over Q (1) $f(x) = x^2 - 12$ (2) $f(x) = 3x^4 - 4x^2 + 8x + 10$ (3) $f(x) = 3x^4 - 7x^3 + 14$	(07)
	b)	$\sqrt{2} + \sqrt{3}$ is algebraic over Q ? If yes, find out its degree over Q. OR	(07)
Q-5	a)	Check that following polynomials are reducible over Q and R or not. (1) $f(x) = 18x^2 - 12x + 48$ (2) $f(x) = 2x^2 - 3x + 6$ (3) $f(x) = x^4 + x^3 + x + 1$.	(07)
	b)	$\sqrt{2}$. $\sqrt{3}$ is algebraic over Q ? If yes, find out its degree over Q.	(07)
Q-6	a)	If L is a finite extension of K and if K is a finite extension of F then prove L is a finite extension of F. Moreover [L:F] = [L:K][K:F]	(07)
	b)	Prove that subgroup of a solvable group is solvable.	(04)
	c)	Define elementary symmetric functions.	(03)
		OR	
Q-6	a)	Prove that $f(x)$ in F[x] has multiple roots if and only if $(f(x), f'(x))$ is constant.	(07)
	b)	Prove that if $p(x)$ is irreducible then $\langle p(x) \rangle$ is a maximal ideal of $F[x]$.	(05)
	c)	Define : splitting field.	(02)

-----X-----X------