\qquad
\qquad

C. U. SHAH UNIVERSITY

M.Sc. (Mathematics) Semester-II Summer - 2015
 Subject Name: Algebra-I Subject Code: 5SC02MTC5

Time: 03 hours

Instructions:

1. Attempt all questions.
2. Make suitable assumption whenever necessary.
3. Figures to the right indicate full marks.

Section- I

Marks
d) Define: Associates. maximal if and only if a_{0} is prime element of R.
b) Let R be a Euclidean ring, then any two elements a and b in R have a greatest common divisor $d=(a, b)$ in R. Moreover $d=\lambda a+\mu b$ for some λ, μ in R .
c) Let $I=\left\{\left(\begin{array}{ll}a & 0 \\ b & 0\end{array}\right) / a, b \in Z\right\}$. Is it an ideal of $M_{2}(Z)$? Justify your answer.

OR

Q-2 a) Prove that the Gaussian ring of integers $\mathrm{J}[\mathrm{i}]$ is a Euclidean ring.
b) Let R be a Euclidean ring, then any element in R is either a unit in R or can be written as a product of a finite number of prime elements in R .
c) Prove that every Euclidean ring has identity.

Q-3 a) Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ be a polynomial with integer coefficients. Suppose that for some prime number p $, p / a_{0}, p / a_{1}, \ldots, p / a_{n-1}$ but p does not divide a_{n} and p^{2} does not divide a_{o}. Then prove $f(x)$ is irreducible over Q .
b) State and prove Unique Factorization Theorem.
c) Let R be a Euclidean ring. Then prove for any $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in R if $(\mathrm{a}, \mathrm{b})=1$ and $a / b c$ then a / c.
OR

Q-3 a) Prove that if $f(x)$ and $g(x)$ in $Z[x]$ are primitive then $f(x) \cdot g(x)$ is also primitive polynomial.
b) Let $f(x)$ and $g(x)$ are two nonzero elements of $\mathrm{F}[\mathrm{x}], \mathrm{F}$ is a field then
prove that $\operatorname{deg}(f(x) \cdot g(x))=\operatorname{deg}(f(x))+\operatorname{deg}(g(x))$.
c) Let R be a Euclidean ring. Prove if π is a prime element in R and $\pi / a b$ then π / a or π / b.

Section - II

Q-4 a) Define : Irreducible polynomial, Primitive polynomial.
b) Define : Galois group.
c) Define: Radical extension.
d) Define: Commutator of a and b in a group G.

Q-5 a) Prove that following polynomials are irreducible over Q
(1) $f(x)=x^{2}-12$ (2) $f(x)=3 x^{4}-4 x^{2}+8 x+10$
(3) $f(x)=3 x^{4}-7 x^{3}+14$
b) $\sqrt{2}+\sqrt{3}$ is algebraic over Q ? If yes, find out its degree over Q.

OR
Q-5 a) Check that following polynomials are reducible over Q and R or not.
(1) $f(x)=18 x^{2}-12 x+48$
(2) $f(x)=2 x^{2}-3 x+6$
(3) $f(x)=x^{4}+x^{3}+x+1$.
b) $\sqrt{2} \cdot \sqrt{3}$ is algebraic over Q ? If yes, find out its degree over Q .

Q-6 a) If L is a finite extension of K and if K is a finite extension of F then prove L is a finite extension of F . Moreover $[\mathrm{L}: \mathrm{F}]=[\mathrm{L}: \mathrm{K}][\mathrm{K}: \mathrm{F}]$
b) Prove that subgroup of a solvable group is solvable.
c) Define elementary symmetric functions.

OR
Q-6 a) Prove that $f(x)$ in $\mathrm{F}[\mathrm{x}]$ has multiple roots if and only if $\left(f(x), f^{\prime}(x)\right)$ is constant.
b) Prove that if $\mathrm{p}(\mathrm{x})$ is irreducible then $\langle\mathrm{p}(\mathrm{x})\rangle$ is a maximal ideal of $\mathrm{F}[\mathrm{x}]$.
c) Define: splitting field.

